Infinite-Dimensional Widths in the Spaces of Functions, II*, [†]

CHUN LI

Institute of Mathematics, Academia Sinica, Beijing, 100080, People's Republic of China

Communicated by Allan Pinkus

Received October 25, 1990; revised March 29, 1991

The concepts of three ∞ -widths are proposed and some of their properties are studied in this paper. The main result is that we obtain the exact values of the three ∞ -widths of Sobolev function classes $B_p^r(\mathbb{R})$ in $L^p(\mathbb{R})$ $(1 \le p \le \infty)$ and find the optimal subspaces and the optimal linear operator. An application of the ∞ -widths to optimal recovery is given. New extremal properties of cardinal splines and cardinal spline interpolation are discovered. \bigcirc 1992 Academic Press, Inc.

1. INTRODUCTION

In this paper we continue the initial work of [6] where the notions of infinite-dimensional widths both in the linear sense and in the sense of Kolmogorov were introduced. Here we will define another infinite-dimensional width in the sense of Gel'fand. For the convenience of readers, we will give the definitions and basic properties of the Kolmogorov and linear ∞ -widths in Section 2. In addition, the definitions in the present paper are more general than those in [6].

The infinite-dimensional widths, abbreviated to ∞ -widths, are natural extensions of *n*-widths. When we consider the best approximation of some classes of functions over the whole real line \mathbb{R} (or the *d* dimensional Euclidean space \mathbb{R}^d), the *n*-widths can not work well in this situation because \mathbb{R} (or \mathbb{R}^d) is not compact. To establish a mode for which one can compare a method of approximating a class of functions over \mathbb{R} with the best possible one, we introduce the ∞ -widths. Roughly speaking, the ∞ -widths give the best lower bound which may be achieved by some method of approximation on some classes of functions over \mathbb{R} , where the

 † This research was partially supported by the National Natural Science Foundation of China.

^{*} This is a part of the author's Ph.D. thesis.

best lower bound means the optimal order of approximation and the best constant before the order. Our main results are given in Section 3 where we obtain the exact values of three ∞ -widths of Sobolev function classes $B_p^r(\mathbb{R})$ in $L^p(\mathbb{R})$ $(1 \le p \le \infty)$ and find the optimal subspaces and the optimal linear operator. In Section 4 we give an application of ∞ -widths to the problem of optimal recovery of $B_p^r(\mathbb{R})$ in $L^p(\mathbb{R})$. It is surprising that the dilation of cardinal spline interpolation is optimal in the sense of both linear ∞ -width and optimal recovery.

2. DEFINITIONS AND BASIC PROPERTIES

Given w > 0, let \mathscr{T}_w be the family of spaces of functions over the real line \mathbb{R} such that

$$\lim_{a \to +\infty} \inf_{\infty} \frac{1}{2a} \dim S|_{[-a,a]} \leq w, \quad \text{for all} \quad S \in \mathcal{T}_{w}, \tag{2.1}$$

where $S|_{[-a,a]}$ is the subspace of S restricted to [-a, a] and dim $S|_{[-a,a]}$ is the dimension of $S|_{[-a,a]}$. It is clear that $S := \operatorname{span} \{\varphi(\cdot - k/w)\}_{k \in \mathbb{Z}} \in \mathscr{F}_w$ if φ is a function with compact support and $F \in \mathscr{F}_w$ if F is a finite-dimensional space of functions over \mathbb{R} . \mathscr{F}_w contains sufficiently many spaces which are subject to the natural and reasonable condition (2.1). In the following we let $X(\mathbb{R})$ be a normed linear space of functions over \mathbb{R} with norm $\|\cdot\|_X$. We usually take $X(\mathbb{R})$ as $L^p(\mathbb{R})$ $(1 \le p \le \infty)$ or $C^b(\mathbb{R}) := C(\mathbb{R}) \cap L^\infty(\mathbb{R})$.

DEFINITION 2.1. Let \mathscr{T}_w and $X(\mathbb{R})$ be given as above and $A \subset X(\mathbb{R})$. The quantity

$$d_{w}(A; X(\mathbb{R})) := \inf_{S \in \mathcal{F}_{w}} \sup_{f \in A} \inf_{g \in S} \left\| f - g \right\|_{X}$$
(2.2)

is called the infinite-dimensional width of A in $X(\mathbb{R})$ in the sense of Kolmogorov, abbreviated ∞ -K width. The ∞ -linear width is defined by

$$\delta_{w}(A; X(\mathbb{R})) := \inf_{M} \sup_{f \in A} \|f - M(f)\|_{X}, \qquad (2.3)$$

where the M under the inf is taken over all linear operators for which $M(\operatorname{span}(A)) \in \mathcal{T}_w$. If there exists a subspace $S^* \in \mathcal{T}_w$ such that

$$d_{w}(A; X(\mathbb{R})) = \sup_{f \in A} \inf_{g \in S^{*}} ||f - g||_{X},$$
(2.4)

then S^{*} is said to be optimal for $d_w(A; X(\mathbb{R}))$ (an optimal subspace for

 $d_{w}(A; X(\mathbb{R})))$. Similarly, if there exists a linear operator M^{*} : span $(A) \to M^{*}(\text{span}(A)) \in \mathcal{T}_{w}$ such that

$$\delta_w(A; X(\mathbb{R})) = \sup_{f \in \mathcal{A}} \|f - M^*(f)\|_X, \qquad (2.5)$$

then M^* is called an optimal linear operator for $\delta_w(A; X(\mathbb{R}))$.

Remark. When w = 1, $X(\mathbb{R}) = L^p(\mathbb{R})$, $1 \le p \le \infty$, and A is the unit ball $B_p^r(\mathbb{R})$ in the Sobolev space, we have given the definitions of $d_1(B_p^r(\mathbb{R}); L^p(\mathbb{R}))$ and $\delta_1(B_p^r(\mathbb{R}); L^p(\mathbb{R}))$ in [6]. The reason why $d_w(A; X(\mathbb{R}))$ and $\delta_w(A; X(\mathbb{R}))$ are called ∞ -widths is illustrated in [6]. The reason why $d_w(A; X(\mathbb{R}))$ is called the ∞ -K width is that its definition is similar to that of the Kolmogorov *n*-width. In addition, we clearly have the relation

$$d_{w}(A; X(\mathbb{R})) \leq \delta_{w}(A; X(\mathbb{R})).$$
(2.6)

PROPOSITION 2.1. Let $X(\mathbb{R})$ be a normed linear space of functions over \mathbb{R} and $A \subset X(\mathbb{R})$. Then

(1) $d_w(\overline{A}: X(\mathbb{R})) = d_w(A; X(\mathbb{R})), \ \delta_w(\overline{A}; X(\mathbb{R})) = \delta_w(A; X(\mathbb{R})), \ where \ \overline{A}$ is the closed hull of A.

(2) $d_w(\alpha A; X(\mathbb{R})) = |\alpha| d_w(A; X(\mathbb{R})), \ \delta_w(\alpha A; X(\mathbb{R})) = |\alpha| \delta_w(A; X(\mathbb{R})), \ \alpha \in \mathbb{R}.$

(3) $d_w(\operatorname{co}(A); X(\mathbb{R})) = d_w(A; X(\mathbb{R})), \quad \delta_w(\operatorname{co}(A); X(\mathbb{R})) = \delta_w(A; X(\mathbb{R})),$ where $\operatorname{co}(A)$ denotes the convex hull of A.

(4) Let $b(A) := \{ \alpha f : f \in A, |\alpha| \leq 1 \}$ be the balanced hull. Then

$$d_w(b(A); X(\mathbb{R})) = d_w(A; X(\mathbb{R})), \qquad \delta_w(b(A); X(\mathbb{R})) = \delta_w(A; X(\mathbb{R})).$$

(5) If $w_1 < w_2$, then

$$d_{w_2}(A; X(\mathbb{R})) \leq d_{w_2}(A; X(\mathbb{R})), \qquad \delta_{w_2}(A; X(\mathbb{R})) \leq \delta_{w_2}(A; X(\mathbb{R})).$$

(6) If
$$A \subset B \subset X(\mathbb{R})$$
, then

$$d_w(A; X(\mathbb{R})) \leq d_w(B; X(\mathbb{R})), \qquad \delta_w(A; X(\mathbb{R})) \leq \delta_w(B; X(\mathbb{R}))$$

The proof of Proposition 2.1 is easy, and we therefore omit it. According to the properties (1), (3), and (4), without loss of generality, we can assume that A is a closed, convex, and centrally symmetric subset of $X(\mathbb{R})$.

We now define another infinite-dimensional width which we refer to as the ∞ -G width. To this end, we need to make some preparations. Let $Y(\mathbb{R})$ be a topological vector space of functions over \mathbb{R} . By $Y'(\mathbb{R})$ we denote the dual space which is the space of continuous linear functionals on $Y(\mathbb{R})$. In the following we define the support of an element of $Y'(\mathbb{R})$ as of the distribution [1, pp. 54-55]. For this purpose we first note that the support of a usual function f over \mathbb{R} is defined by

$$\operatorname{supp} f := \overline{\{x \in \mathbb{R} : f(x) \neq 0\}}.$$
(2.7)

DEFINITION 2.2. Let $\tau \in Y'(\mathbb{R})$.

(1) Suppose V is an open subset of \mathbb{R} . If

 $\tau(f) = 0$, for all $f \in Y(\mathbb{R})$ satisfying supp $f \subset V$,

then τ is said to be zero on V.

(2) The support of τ is the complementary set of the largest open subset on which τ is zero. In other words, the support of τ is the smallest closed set outside of which τ is zero.

For $T := \{\tau_j\}_{j \in \mathbb{Z}}$, where $\tau_j \in Y'(\mathbb{R}), j \in \mathbb{Z}$, we denote $T(f) := \{\tau_j(f)\}_{j \in \mathbb{Z}}, f \in Y(\mathbb{R}); \text{ Ker } T := \{f \in Y(\mathbb{R}): T(f) = 0\}$, where T(f) = 0 means that $\tau_j(f) = 0$, for all $j \in \mathbb{Z}$. In addition, we use the notation

$$T|_{[-a, a]} := \{\tau_j \in T: \operatorname{supp} \tau_j \cap [-a, a] \neq \emptyset\}.$$

$$(2.8)$$

DEFINITION 2.3. Let w > 0, $X(\mathbb{R})$ be a normed linear space of functions over \mathbb{R} , and $A \subset X(\mathbb{R})$. Set $Y_A(\mathbb{R}) := \operatorname{span}(A)$.

(1) $\Theta_w(A) := \{T = \{\tau_j\}_{j \in \mathbb{Z}} : \tau_j \in Y'_A(\mathbb{R}), j \in \mathbb{Z}, \text{ and } \liminf_{a \to +\infty} (1/2a)$ card $(T|_{[-a,a]}) \leq w\}$, where card(B) stands for the cardinality of the set B.

(2) Assume $0 \in A$. The quantity

$$d^{w}(A; X(\mathbb{R})) := \inf_{T \in \Theta_{w}(A)} \sup_{f \in A \cap \operatorname{Ker} T} \|f\|_{X}$$
(2.9)

is called the infinite-dimensional width of A in $X(\mathbb{R})$ in the sense of Gel'fand, abbreviated ∞ -G width. If there exists a $T^* \in \Theta_w(A)$ such that

$$d^{\nu}(A; X(\mathbb{R})) := \sup_{f \in A \cap \operatorname{Ker} T^*} \|f\|_X, \qquad (2.10)$$

then Ker T* is said to be an optimal subspace for $d^{w}(A; X(\mathbb{R}))$.

In the following we list some basic properties of $d^w(A; X(\mathbb{R}))$.

PROPOSITION 2.2. Let $X(\mathbb{R})$ be the normed linear space of functions over \mathbb{R} and $0 \in A \subset X(\mathbb{R})$.

(1)
$$d^{w}(\alpha A; X(\mathbb{R})) = |\alpha| d^{w}(A; X(\mathbb{R})), \quad \alpha \in \mathbb{R}.$$

(2) Let b(A) be the balanced hull defined as in Proposition 2.1. Then

 $d^{w}(b(A); X(\mathbb{R})) = d^{w}(A; X(\mathbb{R})).$

- (3) If $w_1 < w_2$, then $d^{w_2}(A; X(\mathbb{R})) \leq d^{w_1}(A; X(\mathbb{R}))$.
- (4) If $A \subset B \subset X(\mathbb{R})$, then $d^{w}(A; X(\mathbb{R})) \leq d^{w}(B; X(\mathbb{R}))$.

Proof. We only prove property (4). The proof of the other properties is easy. Since $A \subset B$, $Y_A(\mathbb{R}) = \operatorname{span}(A) \subset \operatorname{span}(B) = Y_B(\mathbb{R})$. Thus $Y'_A(\mathbb{R}) \supset$ $Y'_B(\mathbb{R})$. From Definition 2.3 we get $\Theta_w(A) \supset \Theta_w(B)$. Given $T \in \Theta_w(B)$, then $T \in \Theta_w(A)$ and we have clearly $B \cap \operatorname{Ker} T \supset A \cap \operatorname{Ker} T$. Therefore,

$$\sup_{f \in B \cap \operatorname{Ker} T} \|f\|_{X} \ge \sup_{f \in A \cap \operatorname{Ker} T} \|f\|_{X} \ge d^{w}(A; X(\mathbb{R})).$$

Since $T \in \Theta_w(B)$ is arbitrary,

$$d^{w}(B; X(\mathbb{R})) = \inf_{T \in \Theta_{w}(B)} \sup_{f \in B \cap \operatorname{Ker} T} \|f\|_{X} \ge d^{w}(A; X(\mathbb{R})).$$

This proves (4).

1

Remark. (1) Similar to the case of the Gel'fand *n*-width, we have only $d^{w}(A; X(\mathbb{R})) \leq d^{w}(\overline{A}; X(\mathbb{R})), \quad d^{w}(A; X(\mathbb{R})) \leq d^{w}(\operatorname{co}(A); X(\mathbb{R})).$

(2) Unlike the case of the Gel'fand *n*-width, we do not know whether $d^{w}(A; X(\mathbb{R})) \leq \delta_{w}(A; X(\mathbb{R}))$ is true in general.

3. Infinite-Dimensional Widths of $B_p^r(\mathbb{R})$ in $L^p(\mathbb{R})$

We begin this section with some notation to be used below. Let I be a finite interval or the whole real line \mathbb{R} . Given a $p \in [1, \infty]$ we set

$$W_p^r(I) := \{ f \in L^p(I) : f^{(r-1)} \text{ loc. abs. cont. on } I \text{ and } f^{(r)} \in L^p(I) \}.$$
(3.1)

 $W_p^r(I)$ is the usual class of Sobolev functions over I. Let

$$B_{p}^{r}(I) := \{ f \in W_{p}^{r}(I) : \| f(r) \|_{L^{p}(I)} \leq 1 \},$$
(3.2)

where $||h||_{L^{p}(I)} := (\int_{I} |h(x)|^{p} dx)^{1/p}$, if $1 \le p < \infty$; $:= \operatorname{ess\,sup}_{x \in I} |h(x)|$, if $p = \infty$. When I = [a, b] is a finite interval we denote that

$$\widetilde{B}_{p}^{r}(I) := \{ f \in B_{p}^{r}(I) : f^{(j)}(a) = f^{(j)}(b), \, j = 0, \, ..., \, r-1 \},$$
(3.3)

$$B_p^r(I)_0 := \{ f \in \tilde{B}_p^r(I) : f^{(j)}(a) = 0, \, j = 0, \, ..., \, r - 1 \}.$$
(3.4)

Obviously $\tilde{B}_{p}^{r}(I)$ may be viewed as a (b-a)-periodic function class and

 $B_p^r(I)_0$ is a subset of $\tilde{B}_p^r(I)$. Since for each $f \in B_p^r(I)_0$ we can assign zero to f(x) for $x \in \mathbb{R} \setminus I$ and then $f \in B_p^r(\mathbb{R})$, $B_p^r(I)_0$ may also be viewed as a subset of $B_p^r(\mathbb{R})$ in this sense.

Let \mathscr{G}_{r-1} be the space of cardinal polynomial splines of degree r-1 with all integers as simple knots, i.e.,

$$\mathscr{G}_{r-1} := \{ s \colon s \in C^{r-2}(\mathbb{R}), s|_{(k,k+1)} \in \mathscr{P}_{r-1}, \text{ all } k \in \mathbb{Z} \},$$
(3.5)

where \mathscr{P}_{r-1} is the class of polynomials of degree not exceeding r-1. For any bounded data $f := (f_j)_{j \in \mathbb{Z}} \in l^{\infty}$, it is known (cf. [3, 9]) that there is a unique bounded function $s_{r-1}(f; x) \in \mathscr{S}_{r-1}$ such that

$$s_{r-1}(f; j+\alpha_r) = f_j, \quad \text{for all} \quad j \in \mathbb{Z},$$

where $\alpha_r := (1 + (-1)^{r-1})/4$. $s_{r-1}(f; x)$ can be expressed in the form

$$s_{r-1}(f;x) = \sum_{j \in \mathbb{Z}} f_j L(x-j),$$
 (3.6)

where $L(x) \in \mathscr{G}_{r-1}$ satisfying $L(j+\alpha_r) = \delta_{j,0}$, $j \in \mathbb{Z}$. When $(f_j)_{j \in \mathbb{Z}}$ are the values of some function f at the points $\{j+\alpha_r\}_{j \in \mathbb{Z}}$, we also write

$$s_{r-1}(f;x) := \sum_{j \in \mathbb{Z}} f(j+\alpha_r) L(x-j).$$
 (3.7)

The meaning of f in $s_{r-1}(f; x)$ depends on the context.

Now we are in a position to state our main results.

THEOREM 3.1. Let r be a positive integer, $p \in [1, \infty]$, w > 0, and $\eta(p, r)$ be defined by

$$\eta(p, r) := \sup\{\|f\|_{L^p[-1, 1]} : f \in \tilde{B}_p^r([-1, 1])$$

and $f(-\cdot) = -f(\cdot) = f(\cdot+1)\}.$ (3.8)

Then

$$d_w(B_p^r(\mathbb{R}); L^p(\mathbb{R})) = \delta_w(B_p^r(\mathbb{R}); L^p(\mathbb{R}))$$
$$= d^w(B_p^r(\mathbb{R}); L^p(\mathbb{R})) = \eta(p, r)w^{-r}$$

Furthermore,

(1) The following space of polynomial splines with simple knots $\{k/w\}_{k \in \mathbb{Z}}$

$$\mathscr{G}_{r-1,w} := \left\{ s(\cdot) : s\left(\frac{\cdot}{w}\right) \in \mathscr{G}_{r-1} \right\},\tag{3.9}$$

is optimal for $d_w(B_p^r(\mathbb{R}); L^p(\mathbb{R}))$.

(2) The interpolation operator $s_{r-1,w}$ defined by

$$s_{r-1,w}(f;x) := \sum_{k \in \mathbb{Z}} f\left(\frac{k+\alpha_r}{w}\right) L(wx-k)$$
(3.10)

is an optimal linear operator for $\delta_w(B_p^r(\mathbb{R}); L^p(\mathbb{R}))$.

is an optimal subspace for $d^w(B_p^r(\mathbb{R}); L^p(\mathbb{R}))$.

Remark. It is easy to verify that $\eta(2, r) = \pi^{-r}$ and $\eta(1, r) = \eta(\infty, r) = \|E_r(\cdot)\|_{L^{\infty}(\mathbb{R})}$, where $E_r(x)$ is the Euler polynomial spline of degree r (cf. [3]), i.e., $E_r(\cdot+1) = -E_r(\cdot)$, $E_r \in C^{r-1}(\mathbb{R})$, and $E_r^{(r)}(x) = 1$, for all $x \in (0, 1)$. In [6] we proved that $d_1(B_2^r(\mathbb{R}); L^2(\mathbb{R})) = \delta_1(B_2^r(\mathbb{R}); L^2(\mathbb{R})) = \pi^{-r}$. Besides \mathscr{G}_{r-1} and s_{r-1} , since (e.g., cf. [15])

$$\|f^{(r)} - s_{2r-1}^{(r)}(f)\|_{L^2(\mathbb{R})}^2 + \|s_{2r-1}^{(r)}(f)\|_{L^2(\mathbb{R})}^2 = \|f^{(r)}\|_{L^2(\mathbb{R})}^2,$$

it follows that \mathscr{G}_{2r-1} is also an optimal subspace for $d_1(B'_2(\mathbb{R}); L^2(\mathbb{R}))$ and s_{2r-1} is also an optimal linear operator for $\delta_1(B'_2(\mathbb{R}); L^2(\mathbb{R}))$. In addition, Sun and Li have proved in another paper [16] that when p = 1, 2, and ∞ ,

$$E(B'_{p}(\mathbb{R});\mathscr{S}_{m})_{p} := \sup_{f \in B'_{p}(\mathbb{R})} \inf_{g \in \mathscr{S}_{m}} ||f - g||_{L^{p}(\mathbb{R})} = \eta(p, r)$$

for all integers $m \ge r-1$. These facts show that $d_w(B_p^r(\mathbb{R}); L^p(\mathbb{R}))$ may have many optimal subspaces.

The proof of Theorem 3.1 is divided into two parts: estimation from above and from below. We start with a series of lemmas and propositions which may be of some independent interest.

PROPOSITION 3.1. Let r be a positive integer and $p \in (1, \infty)$. For each $f \in W_p^r(\mathbb{R})$, we have $s_{r-1}(f) \in W_p^r(\mathbb{R})$, and

$$\|f - s_{r-1}(f)\|_{L^{p}(\mathbb{R})} \leq \eta(p, r) \|f^{(r)}\|_{L^{p}(\mathbb{R})}.$$
(3.12)

For the case p=2 this proposition is proved in the recent paper [15] The proof given here is similar to that in [15] but with new lemmas. In the following lemmas, r is always a positive integer and $p \in (1, \infty)$. For convenience, we write $\sum \text{ or } \sum_{i \in \mathbb{Z}}$ and $\int \text{ instead of } \int_{\mathbb{R}}$.

LEMMA 3.1. Let $f \in W_p^r(\mathbb{R})$. Then the series $\sum |f(j+x)|^p$ converges for every $x \in \mathbb{R}$.

Proof. Since $f \in L^{p}(\mathbb{R})$ and $f^{(r)} \in L^{p}(\mathbb{R})$ for $f \in W_{p}^{r}(\mathbb{R})$, by Stein's inequalities [12] we know that $f' \in L^{p}(\mathbb{R})$. Since

$$\int_{0}^{1} \sum |f(j+x)|^{p} dx = \sum \int_{0}^{1} |f(j+x)|^{p} dx$$
$$= \sum \int_{j}^{j+1} |f(x)|^{p} dx = \int |f(x)|^{p} dx < \infty,$$

 $\sum |f(j+x)|^p$ converges almost everywhere. Let $x_0 \in [0, 1]$ be such that $\sum |f(j+x_0)|^p \le \int |f(x)|^p dx < +\infty$. Then for any $x \in [0, 1]$ we have

$$||f(j+x)|^{p} - |f(j+x_{0})|^{p}| = \left| \int_{j+x_{0}}^{j+x} p |f(y)|^{p-1} f'(y) \operatorname{sgn}[f(y)] dy \right|$$
$$\leq p \int_{i}^{j+1} |f(y)|^{p-1} |f'(y)| dy.$$

Thus

$$\begin{split} \sum |f(j+x)|^{p} &\leq \sum |f(j+x_{0})|^{p} + \sum ||f(j+x)|^{p} - |f(j+x_{0})|^{p}| \\ &\leq \int |f(y)|^{p} \, dy + p \int |f(y)|^{p-1} |f'(y)| \, dy \\ &\leq \int |f(y)|^{p} \, dy + p \left(\int |f(y)|^{p} \, dy \right)^{1/p'} \left(\int |f'(y)|^{p} \, dy \right)^{1/p} \\ &=: M < \infty, \end{split}$$

where 1/p' + 1/p = 1. The inequality $\sum |f(j+x)|^p \leq M$ is also true for all $x \in \mathbb{R}$ since $\sum |f(j+x)|^p$ is an 1-periodic function. This proves Lemma 3.1.

LEMMA 3.2. Suppose
$$f^n := (f_j^n)_{j \in \mathbb{Z}} \in \mathbb{R}^{\mathbb{Z}}$$
 satisfies
 $f_j^n = 0$, for all $|j| < 2n$ and $|f_j^n| \leq M$, for all $|j| \ge 2n$,

where n = 1, 2, ..., and M is a constant. Then

$$\lim_{n \to \infty} \|s_{r-1}(f^n)\|_{L^p[-n,n]} = 0.$$
(3.13)

Proof. For the fundamental function $L(x) \in \mathscr{G}_{r-1}$ appearing in (3.6), we

first have to estimate $\int_{-n}^{n} |L(x-j)|^p dx$ for $|j| \ge 2n$. From [3] or [9] it is known that

$$|L(x)| \le Ae^{-B|x|}, \quad \text{for all} \quad x \in \mathbb{R}, \tag{3.14}$$

where A and B are positive constants depending only on r. Thus,

$$\int_{-n}^{n} |L(x-j)|^{p} dx \leq A^{p} \int_{-n}^{n} e^{-Bp||x-j|} dx$$
$$= A^{p} e^{-Bp||j|} \int_{-n}^{n} e^{\operatorname{sgn}(j)Bpx} dx$$
$$= \frac{A^{p}}{Bp} e^{-Bp||j|} (e^{Bpn} - e^{-Bpn}) \leq \frac{A^{p} e^{Bpn}}{Bp} e^{-Bp||j|} \quad (3.15)$$

for $|j| \ge 2n$. Hence we have

$$\|s_{r-1}(f^{n})\|_{L^{p}[-n,n]} \leq \sum_{|j| \ge 2n} \|f_{j}^{n}\| \cdot \|L(\cdot-j)\|_{L^{p}[-n,n]}$$

$$\leq M \sum_{|j| \ge 2n} \frac{Ae^{Bn}}{(Bp)^{1/p}} e^{-B|j|} = \frac{2MAe^{-Bn}}{(Bp)^{1/p}(1-e^{-B})} \to 0, \quad \text{as} \quad n \to \infty.$$
(3.16)

This proves (3.13).

For
$$f := (f_j)_{j \in \mathbb{Z}} \in \mathbb{R}^{\mathbb{Z}}$$
 we say $f \in l^p$ provided that $||f||_{l^p} := (\sum |f_j|^p)^{1/p} < \infty$.

LEMMA 3.3. Let $f \in l^p$. Then

$$\|s_{r-1}(f)\|_{\mathcal{U}(\mathbb{R})} \leq C \|f\|_{l^p}$$
(3.17)

with the constant $C := (\int_0^1 (\sum_k |L(x+k)|)^p dx)^{1/p} < \infty$.

Proof. Let $h \in L^{p'}(\mathbb{R})$ satisfying $||h||_{L^{p'}(\mathbb{R})} \leq 1$, where 1/p' + 1/p = 1. Then

$$\int h(x) s_{r-1}(f; x) dx$$

$$\leq \int |h(x)| \sum |f_j| |L(x-j)| dx$$

$$= \sum |f_j| \int |h(x)| |L(x-j)| dx$$

$$= \sum |f_j| \int |h(x+j)| |L(x)| dx$$

$$\begin{split} &= \int \left(\sum |f_j| |h(x+j)| \right) |L(x)| dx \\ &\leq \int \left(\sum |f_j|^p \right)^{1/p} \left(\sum |h(x+j)|^{p'} \right)^{1/p'} |L(x)| dx \\ &= \|f\|_{l^p} \sum_k \int_k^{k+1} |L(x)| \left(\sum_j |h(x+j)|^{p'} \right)^{1/p'} dx \\ &= \|f\|_{l^p} \sum_k \int_0^1 |L(x+k)| \left(\sum_j |h(x+k+j)|^{p'} \right)^{1/p'} dx \\ &= \|f\|_{l^p} \int_0^1 \left(\sum_k |L(x+k)| \right) \left(\sum_j |h(x+j)|^{p'} \right)^{1/p'} dx \\ &\leq \|f\|_{l^p} \left(\int_0^1 \left(\sum_k |L(x+k)| \right)^p dx \right)^{1/p} \left(\int_0^1 \sum_j |h(x+j)|^{p'} dx \right)^{1/p} \\ &= \|f\|_{l^p} \left(\int_0^1 \left(\sum_k |L(x+k)| \right)^p dx \right)^{1/p} \left(\int |h(x)|^{p'} dx \right)^{1/p'} \\ &= C \|f\|_{l^p} \|h\|_{L^{p'}(\mathbb{R})} \leq C \|f\|_{l^p}, \end{split}$$

where the constant C is indicated in this lemma and Hölder's inequalities are used twice. From (3.14) we know that C is a finite constant which depends only on r and p. Hence we obtain

$$\|s_{r-1}(f)\|_{L^{p}(\mathbb{R})} = \sup\left\{\int h(x) \, s_{r-1}(f;x) \, dx \colon \|h\|_{L^{p'}(\mathbb{R})} \leq 1\right\} \leq C \, \|f\|_{p}$$

Remark. Professor C. A. Micchelli has told the author that Lemma 3.3 can be proved by the operator interpolation theorem. Since one can easily verify that inequality (3.17) is true for p = 1 and $p = \infty$, (3.17) is also true for $p \in (1, \infty)$ with some constant C. However, the above direct elementary proof gives the constant C explicitly and may be of some independent interest.

LEMMA 3.4. Let n be a positive integer. Then

$$\sup\{\|f-s_{r-1}(f)\|_{L^p[-2n,2n]}: f \in \tilde{B}'_p([-2n,2n])\} = \eta(p,r)$$

where $\eta(p, r)$ is given in (3.8).

Proof. Associate two functions f and g via the equation $g(x) = (2n/\pi)^{1/p-r} f(2nx/\pi)$. Then $g^{(r)}(x) = (2n/\pi)^{1/p} f^{(r)}(2nx/\pi)$, $||g||_{L^p[-\pi,\pi]} = (2n/\pi)^{-r} ||f||_{L^p[-2n,2n]}$, and $||g^{(r)}||_{L^p[-\pi,\pi]} = ||f^{(r)}||_{L^p[-2n,2n]}$. Thus $f \in C^{(r)}(x) = C^{(r)}(x)$.

 $\widetilde{B}_{p}^{r}([-2n, 2n])$ if and only if $g \in \widetilde{B}_{p}^{r}([-\pi, \pi])$. Let $s_{r-1}^{*}(g; x) := (2n/\pi)^{1/p-r}s_{r-1}(f; 2nx/\pi)$ for $f \in \widetilde{B}_{p}^{r}([-2n, 2n])$. Then $s_{r-1}^{*}(g; x)$ is a 2 π -periodic polynomial spline function of degree not exceeding r-1, which interpolates g at the points $\{(j+\alpha_{r})\pi/2n\}_{j=-2n}^{2n-1}$. By [5] we know that

$$\sup\{\|g - s_{r-1}^{*}(g)\|_{L^{p}[-\pi,\pi]} \colon g \in \widetilde{B}_{p}^{r}([-\pi,\pi])\}$$

= $(2n)^{-r} \sup\{\|h\|_{L^{p}[-\pi,\pi]} \colon h \in \widetilde{B}_{p}^{r}([-\pi,\pi]), h(\cdot+\pi) = -h(\cdot) = h(-\cdot)\}$
= $\left(\frac{2n}{\pi}\right)^{-r} \sup\{\|h\|_{L^{p}[-1,1]} \colon h \in \widetilde{B}_{p}^{r}([-1,1]), h(\cdot+1) = -h(\cdot) = h(-\cdot)\}$
= $\left(\frac{2n}{\pi}\right)^{-r} \eta(p,r).$

Hence

$$\sup\{\|f - s_{r-1}(f)\|_{L^{p}[-2n,2n]} \colon f \in \widetilde{B}_{p}^{r}([-2n,2n])\} = \left(\frac{2n}{\pi}\right)^{r} \sup\{\|g - s_{r-1}^{*}(g)\|_{L^{p}[-\pi,\pi]} \colon g \in \widetilde{B}_{p}^{r}([-\pi,\pi])\} = \eta(p,r).$$

Proof of Proposition 3.1. For $f \in W_p^r(\mathbb{R})$, Lemma 3.1 shows that $\sum_j |f(j+\alpha_r)|^p < \infty$. Therefore by Lemma 3.3, $s_{r-1}(f) \in L^p(\mathbb{R})$.

Given $\varepsilon > 0$ and noticing that $f \in W_p^r(\mathbb{R}) \subset L^p(\mathbb{R})$, there exists a number $N(\varepsilon) > 0$ such that for every $n > N(\varepsilon)$,

$$\|f - s_{r-1}(f)\|_{L^{p}(\mathbb{R})}^{p} \leq \varepsilon + \int_{-n}^{n} |f(x) - s_{r-1}(f;x)|^{p} dx.$$
(3.18)

In the following we employ Cavaretta's technique [4]. We take a function $g \in C^{r-1}(\mathbb{R})$ with the properties that g(x) = 1, for $|x| \leq 1$, supp g = [-2, 2], g(x) is strictly monotone on $(1, 2) \cup (-2, -1)$, and $\|g^{(k)}\|_{L^{\infty}(\mathbb{R})} < \infty$, k = 0, 1, ..., r. There exist such functions [4]. Now we set

$$F_n(x) := f(x) g\left(\frac{x}{n}\right), \qquad x \in \mathbb{R}.$$
 (3.19)

Then $F_n \in C^{r-1}(\mathbb{R})$, supp $F_n = [-2n, 2n]$, and

$$F_n^{(r)}(x) = f_n^{(r)}(x) g\left(\frac{x}{n}\right) + \sum_{j=1}^r \frac{1}{n^j} \binom{r}{j} f^{(r-j)}(x) g^{(j)}\left(\frac{x}{n}\right).$$

Observing that $|g(x/n)| \leq 1$ and $|g^{(j)}(x/n)| \leq C_1$, all $x \in \mathbb{R}$, j = 1, ..., r, and

from Stein's inequalities [12] that $||f^{(r-j)}||_{L^{p}(\mathbb{R})} \leq C_2$, j = 1, ..., r, where C_1 and C_2 are constants independent of *n*, we have

$$\|F_n^{(r)}\|_{L^p[-2n,2n]} = \|F_n^{(r)}\|_{L^p(\mathbb{R})} \le \|f^{(r)}\|_{L^p(\mathbb{R})} + \frac{2^r}{n} C_1 C_2.$$
(3.20)

Consider the periodic function $\tilde{F}_n(x)$ defined as

$$\widetilde{F}_n(x) = F_n(x), x \in [-2n, 2n);$$
 and $\widetilde{F}_n(x+4n) = \widetilde{F}_n(x), x \in \mathbb{R}$

Then from $F_n^{(k)}(-2n) = F_n^{(k)}(2n) = 0$, k = 0, ..., r-1, we know that $\tilde{F}_n / \|\tilde{F}_n^{(r)}\|_{L^p[-2n, 2n]} \in \tilde{B}_p^r([-2n, 2n])$ (if $\|\tilde{F}_n^{(r)}\|_{L^p[-2n, 2n]} = 0$, then $\tilde{F}_n = 0 \in \tilde{B}_p^r([-2n, 2n])$). Thus, by Lemma 3.4 and (3.20) we obtain

$$\begin{aligned} \|\tilde{F}_{n} - s_{r-1}(\tilde{F}_{n})\|_{L^{p}[-n,n]} \\ &\leq \|\tilde{F}_{n} - s_{r-1}(\tilde{F}_{n})\|_{L^{p}[-2n,2n]} \\ &\leq \eta(p,r) \|F_{n}^{(r)}\|_{L^{p}[-2n,2n]} \leq \eta(p,r) \left(\|f^{(r)}\|_{L^{p}(\mathbb{R})} + \frac{2^{r}}{n} C_{1}C_{2} \right). \end{aligned}$$
(3.21)

Letting $n > N(\varepsilon)$ and noting that $\tilde{F}_n(x) = F_n(x) = f(x)$ for all $|x| \le n$, the inequalities (3.18) and (3.21) yield

$$\begin{split} \|f - s_{r-1}(f)\|_{L^{p}(\mathbb{R})}^{p} \\ &\leqslant \varepsilon + \|\tilde{F}_{n} - s_{r-1}(f)\|_{L^{p}[-n,n]}^{p} \\ &\leqslant \varepsilon + (\|\tilde{F}_{n} - s_{r-1}(\tilde{F}_{n})\|_{L^{p}[-n,n]} + \|s_{r-1}(\tilde{F}_{n}) - s_{r-1}(f)\|_{L^{p}[-n,n]})^{p} \\ &\leqslant \varepsilon + \left(\eta(p,r)\left(\|f^{(r)}\|_{L^{p}(\mathbb{R})} + \frac{2^{r}C_{1}C_{2}}{n}\right) \\ &+ \|s_{r-1}(\tilde{F}_{n}) - s_{r-1}(F_{n})\|_{L^{p}[-n,n]} + \|s_{r-1}(F_{n}) - s_{r-1}(f)\|_{L^{p}[-n,n]}\right)^{p}. \end{split}$$

$$(3.22)$$

On the other hand, by Lemma 3.3, we have

$$\|s_{r-1}(F_n) - s_{r-1}(f)\|_{L^p[-n,n]} = \|s_{r-1}(F_n - f)\|_{L^p[-n,n]} \\ \leq \|s_{r-1}(F_n - f)\|_{L^p(\mathbb{R})} \leq C \left(\sum_{j \in \mathbb{Z}} |F_n(j + \alpha_r) - f(j + \alpha_r)|^p\right)^{1/p} \\ \leq 2C \left(\sum_{|j| \ge n} |f(j + \alpha_r)|^p\right)^{1/p},$$
(3.23)

where the last inequality follows from the fact that $|F_n(x)| \leq |f(x)|$, for all $x \in \mathbb{R}$ and $F_n(x) = f(x)$, for all $|x| \leq n$. Since $\tilde{F}_n(j+\alpha_r) - F_n(j+\alpha_r) = 0$, |j| < 2n; $|\tilde{F}_n(j+\alpha_r) - F_n(j+\alpha_r)| \leq |\tilde{F}_n(j+\alpha_r)| \leq (\sum_k |f(k+\alpha_r)|^p)^{1/p} < \infty$, $|j| \geq 2n$, n = 1, 2, ..., Lemma 3.2 gives

$$\lim_{n \to \infty} \|s_{r-1}(\tilde{F}_n) - s_{r-1}(F_n)\|_{L^p[-n,n]}$$

=
$$\lim_{n \to \infty} \|s_{r-1}(\tilde{F}_n - F_n)\|_{L^p[-n,n]} = 0.$$
 (3.24)

According to (3.23) and (3.24), letting $n \to \infty$ in (3.22), we obtain

$$||f - s_{r-1}(f)||_{L^{p}(\mathbb{R})}^{p} \leq \varepsilon + (\eta(p, r) ||f^{(r)}||_{L^{p}(\mathbb{R})})^{p}.$$

Since $\varepsilon > 0$ is arbitrary, we let $\varepsilon \to 0^+$ in the above inequality and get (3.12). This completes the proof of Proposition 3.1.

Remark. We should note that the inequality (3.12) is also true for the case p = 1 and $p = \infty$. The readers may refer to de Boor and Schoenberg [3] or Micchelli [9] for the case $p = +\infty$ and Li [7] for the case p = 1. In [9, 7] the general case of cardinal \mathscr{L} -splines is considered.

PROPOSITION 3.2. Suppose r is a positive integer, w > 0, and $p \in [1, \infty]$. For $f \in W_p^r(\mathbb{R})$, let $s_{r-1,w}(f)$ and $\eta(p,r)$ be defined in (3.10) and (3.8), respectively. Then $s_{r-1,w}(f) \in L^p(\mathbb{R})$, and

$$\|f - s_{r-1,w}(f)\|_{L^{p}(\mathbb{R})} \leq \eta(p,r) w^{-r} \|f^{(r)}\|_{L^{p}(\mathbb{R})}.$$
(3.25)

Proof. By Proposition 3.1 and the above remark, the inequality (3.25) is true for the case w = 1. For the general case w > 0, we make a transform of dilation as follows. Let g(x) := f(x/w). Then one can easily see that $s_{r-1,w}(f; x) = s_{r-1}(g; wx)$. In the following we consider only the case $1 \le p < \infty$. The proof for the case $p = \infty$ is similar. Thus,

$$\begin{split} \|f - s_{r-1,w}(f)\|_{L^{p}(\mathbb{R})} &= \left(\int_{\mathbb{R}} \|g(wx) - s_{r-1}(g;wx)\|^{p} dx\right)^{1/p} \\ &= \left(\frac{1}{w} \int_{\mathbb{R}} \|g(y) - s_{r-1}(g;y)\|^{p} dy\right)^{1/p} = w^{-1/p} \|g - s_{r-1}(g)\|_{L^{p}(\mathbb{R})} \\ &\leq w^{-1/p} \eta(p,r) \|g^{(r)}\|_{L^{p}(\mathbb{R})} = w^{-1/p-r} \eta(p,r) \left(\int_{\mathbb{R}} \left|f^{(r)}\left(\frac{y}{w}\right)\right|^{p} dy\right)^{1/p} \\ &= w^{-r} \eta(p,r) \left(\int_{\mathbb{R}} \|f^{(r)}(x)\|^{p} dx\right)^{1/p} = w^{-r} \eta(p,r) \|f^{(r)}\|_{L^{p}(\mathbb{R})}. \end{split}$$

To get the lower bound, we need the following lemma. Let X be a normed linear space and $A \subset X$. By $b_n(A; X)$ we denote the Bernstein *n*-width [11] of A in X.

LEMMA 3.5. Let n and r be positive integers and $p \in [1, \infty]$. Then

 $b_n(B_p^r(I)_0; L^p(I)) \ge b_{n+r}(\tilde{B}_p^r(I); L^p(I)),$

where I = [a, b] is a finite interval, and $\tilde{B}_p^r(I)$ and $B_p^r(I)_0$ are defined in (3.3) and (3.4), respectively.

Proof. Given $\varepsilon > 0$, according to the definition of the Bernstein *n*-width [11], there exist a $\mu > 0$ and a subspace $X_{n+r+1} \subset L^p(I)$ with dim $X_{n+r+1} = n+r+1$, such that

$$\mu S(X_{n+r+1}) \subseteq \widetilde{B}_p^r(I)$$
 and $\mu + \varepsilon > b_{b+r}(\widetilde{B}_p^r(I); L^p(I)) \ge \mu$

where $S(X_{n+r+1}) := \{f \in X_{n+r+1} : ||f||_{L^{p}(I)} \le 1\}$. Note that from the first containing relation we know that each element of X_{n+r+1} has continuous derivatives up to order r-1. Put

$$X_{n+1}^* := \{ f \in X_{n+r+1} : f^{(j)}(a) = 0, j = 0, ..., r-1 \}.$$

Then dim $X_{n+1}^* \ge \dim X_{n+r+1} - r = n+1$ and $\mu S(X_{n+1}^*) \subseteq B_p^r(I)_0$. Therefore

$$b_n(B_n^r(I)_0; L^p(I)) \ge \mu > b_{n+r}(\tilde{B}_n^r(I); L^p(I)) - \varepsilon.$$

Letting $\varepsilon \to 0^+$ we conclude the desired inequality.

Proof of Theorem 3.1. We first point out that $\mathscr{G}_{r-1,w} \in \mathscr{T}_w$, where \mathscr{T}_w is the family of spaces defined in Section 2 and $\mathscr{G}_{r-1,w}$ is given in (3.9). In fact, if we consider the *B*-spline function [2]

$$M_{r,w}(x) := r \left[0, \frac{1}{w}, ..., \frac{r}{w} \right] (\cdot - x)_{+}^{r-1}$$

with 0, 1/w, ..., r/w as simple knots, then $M_{r,w}$ has compact support [0, r/w] and $\mathscr{G}_{r-1,w} = \operatorname{span}\{M_{r,w}(\cdot - k/w)\}_{k \in \mathbb{Z}}$. Thus according to Section 2 we see that $\mathscr{G}_{r-1,w} \in \mathscr{F}_w$. Now, observing that $s_{r-1,w}$ (cf. (3.10)) is a linear operator which maps $W_p^r(\mathbb{R}) = \operatorname{span}(B_p^r(\mathbb{R}))$ into $\mathscr{G}_{r-1,w}$, by Proposition 3.2, the definition of ∞ -linear width, and the inequality (2.6), we obtain

$$d_{w}(B_{p}^{r}(\mathbb{R}); L^{p}(\mathbb{R})) \leqslant \delta_{w}(B_{p}^{r}(\mathbb{R}); L^{p}(\mathbb{R}))$$
$$\leqslant \sup_{f \in B_{p}^{r}(\mathbb{R})} \|f - s_{r-1,w}(f)\|_{L^{p}(\mathbb{R})} \leqslant \eta(p, r)w^{-r}.$$
(3.26)

To show that equality holds in (3.26), it remains to prove that $d_w(B_p^r(\mathbb{R}); L^p(\mathbb{R})) \ge \eta(p, r)w^{-r}$. By the definition of the ∞ -K width, it is sufficient to demonstrate

$$E(B'_{p}(\mathbb{R}); S)_{p} := \sup_{f \in \widetilde{B}'_{p}(\mathbb{R})} \inf_{g \in S} ||f - g||_{L^{p}(\mathbb{R})} \ge \eta(p, r) w^{-r}, \quad \text{for all} \quad S \in \widetilde{\mathcal{T}}_{w}.$$
(3.27)

Let $\varepsilon > 0$ and $S \in \mathscr{T}_w$. Without loss of generality we can assume that dim $S = \infty$. From (2.1) we can find a sequence $\{a_k\}_{k=1}^{\infty}$ of positive numbers satisfying $a_k \to \infty$ as $k \to \infty$ such that

$$n_k := \dim S|_{[-a_k, a_k]} \leq 2(1+\varepsilon) w a_k, \qquad k = 1, 2, \dots$$
(3.28)

Set $I_k := [-a_k, a_k]$. As we pointed out at the beginning of this section, $B_p^r(I_k)_0$ can be viewed as a subset of $B_p^r(\mathbb{R})$. Thus, by definition we have

$$E(B_{p}^{r}(\mathbb{R}); S)_{p} \geq \sup_{f \in \tilde{B}_{p}^{r}(I_{k})_{0}} \inf_{g \in S} ||f - g||_{L^{p}(\mathbb{R})}$$

$$\geq \sup_{f \in \tilde{B}_{p}^{r}(I_{k})_{0}} \inf_{g \in S|_{I_{k}}} ||f - g||_{L^{p}(I_{k})} \geq d_{n_{k}}(B_{p}^{r}(I_{k})_{0}; L^{p}(I_{k})), \quad (3.29)$$

where the last inequality follows from the definition of the Kolmogorov *n*-width $d_n(A; X)$ and (3.28). By the fact that $d_n(B_p^r(I_k)_0; L^p(I_k)) \ge b_n(B_p^r(I_k)_0; L^p(I_k))$ and Lemma 3.5 we get

$$E(B_{p}^{r}(\mathbb{R}); S)_{p} \geq b_{n_{k}}(B_{p}^{r}(I_{k})_{0}; L^{p}(I_{k}))$$

$$\geq b_{n_{k}+r}(\tilde{B}_{p}^{r}(I_{k}); L^{p}(I_{k}))$$

$$= \left(\frac{a_{k}}{\pi}\right)^{r} b_{n_{k}+r}(B_{p}^{r}([-\pi, \pi]); L^{p}([-\pi, \pi]))$$

$$\geq (\pi w)^{-r}(1+\varepsilon)^{-r}2^{-r}n_{k}^{r}b_{n_{k}+r}(\tilde{B}_{p}^{r}([-\pi, \pi]); L^{p}([-\pi, \pi])),$$
(3.30)

where the equality follows from a transform of scale of variable argument in the definition of the Bernstein *n*-width and the last inequality follows from (3.28). For the case 1 we know from Chen and Li [5] that

$$\lim_{n \to \infty} 2^{-r} n^r b_{n+r} (\tilde{B}_p^r([-\pi,\pi]); L^p([-\pi,\pi]))$$

$$= \lim_{n \to \infty} 2^{-r} \left(\frac{n}{n+r}\right)^r (n+r)^r b_{n+r} (\tilde{B}_p^r([-\pi,\pi]); L^p([-\pi,\pi]))$$

$$= \sup\{\|f\|_{L^p[-\pi,\pi]} \colon f \in \tilde{B}_p^r([-\pi,\pi]) \text{ and } f(-\cdot) = f(\cdot) = -f(\cdot+\pi)\}$$

$$= \pi^r \sup\{\|f\|_{L^p[-1,1]} \colon f \in \tilde{B}_p^r([-1,1]) \text{ and } f(-\cdot) = f(\cdot) = -f(\cdot+1)\}$$

$$= \pi^r \eta(p, r).$$
(3.31)

From the monograph [11, pp. 133, 180, and 183] we see that the above strong asymptotic relation is also true in the cases p=1 and $p=\infty$. Therefore, letting $k \to \infty$ in (3.30) and noticing that $n_k \to \dim S = \infty$, we conclude that

$$E(B_{p}^{r}(\mathbb{R}); S)_{p} \geq (1+\varepsilon)^{-r} \eta(p, r) w^{-r}.$$

Since $\varepsilon > 0$ is arbitrary, (3.27) follows, and therefore $d_w(B_p^r(\mathbb{R}); L^p(\mathbb{R})) \ge \eta(p, r)w^{-r}$. Combining this inequality with (3.26) gives

$$d_{w}(B_{p}^{r}(\mathbb{R}); L^{p}(\mathbb{R})) = \delta_{w}(B_{p}^{r}(\mathbb{R}); L^{p}(\mathbb{R}))$$

=
$$\sup_{f \in B_{p}^{r}(\mathbb{R})} ||f - s_{r-1,w}(f)||_{L^{p}(\mathbb{R})} = \eta(p,r)w^{-r}.$$
 (3.32)

To complete the proof of Theorem 3.1, we must show

$$d^{w}(B_{p}^{r}(\mathbb{R}); L^{p}(\mathbb{R})) = \sup_{f \in B_{p}^{r}(\mathbb{R}) \cap \text{Ker } T^{*}} ||f||_{L^{p}(\mathbb{R})} = \eta(p, r) w^{-r}, \quad (3.33)$$

where Ker T^* is given in (3.11). For $A = B'_p(\mathbb{R})$ we have $Y_A(\mathbb{R}) := \operatorname{span}(A) = W'_p(\mathbb{R})$. By $(W'_p(\mathbb{R}))'$ we denote the dual space of $W'_p(\mathbb{R})$, and for ease of notation, we set

$$\Theta_{w} := \Theta_{w}(A)$$

$$= \left\{ T = \{\tau_{j}\}_{j \in \mathbb{Z}} : \tau_{j} \in (W_{p}^{r}(\mathbb{R}))^{\prime}, j \in \mathbb{Z}, \liminf_{a \to +\infty} \frac{1}{2a} \operatorname{card}(T|_{[-a,a]}) \leq w \right\}.$$
(3.34)

Again, let $\varepsilon > 0$ and $T = {\tau_j}_{j \in \mathbb{Z}} \in \Theta_w$. By definition we can find a sequence ${a_k}_{k=1}^{\infty}$ of positive numbers with $a_k \to \infty$ as $k \to \infty$, such that

$$n_k := \operatorname{card}(T|_{[-a_k, a_k]}) \leq 2a_k w(1+\varepsilon), \qquad k = 1, 2, \dots.$$
(3.35)

Put $I_k := [-a_k, a_k]$. Then we have

$$\sup_{f \in B_{p}^{r}(\mathbb{R}) \cap \operatorname{Ker} T} \|f\|_{L^{p}(\mathbb{R})}$$

$$\geq \sup_{f \in B_{p}^{r}(I_{k})_{0} \cap \operatorname{Ker} T} \|f\|_{L^{p}(\mathbb{R})}$$

$$= \sup_{f \in B_{p}^{r}(I_{k})_{0} \cap \operatorname{Ker} T|_{I_{k}}} \|f\|_{L^{p}(I_{k})} \geq d^{m_{k}}(B_{p}^{r}(I_{k})_{0}; W_{p}^{r}(I_{k})_{0}), \quad (3.36)$$

where the last inequality follows from the definition of the Gel'fand *n*-width $d^n(A; X)$ and the definition of n_k . Note that we can view the continuous linear functionals in $T|_{I_k}$ as elements of $(W_p^r(I_k)_0)'$, where $W_p^r(I_k)_0 :=$

span $(B'_p(I_k)_0)$ is a subspace of $L^p(I_k)$ with norm $\|\cdot\|_{L^p(I_k)}$. By well known properties [11] of the Gel'fand *n*-width, we have

$$d^{n}(B_{p}^{r}(I_{k})_{0}; W_{p}^{r}(I_{k})_{0}) = d^{n}(B_{p}^{r}(I_{k})_{0}; L_{p}^{r}(I_{k})) \ge b_{n}(B_{p}^{r}(I_{k})_{0}; L_{p}^{r}(I_{k})).$$
(3.37)

As an analog to the previous deduction (cf. (3.28)-(3.31)), from (3.35), (3.36), and (3.37) we can conclude that

$$\sup_{f \in B_p'(\mathbb{R}) \cap \operatorname{Ker} T} \|f\|_{L^p(\mathbb{R})} \ge (1+\varepsilon)^{-r} \eta(p,r) w^{-r}.$$

Since $\varepsilon > 0$ and $T \in \Theta_w$ are arbitrary, it follows that

$$d^{w}(B_{\rho}^{r}(\mathbb{R}); L^{\rho}(\mathbb{R})) = \inf_{T \in \Theta_{w}} \sup_{f \in B_{\rho}^{r}(\mathbb{R}) \cap \operatorname{Ker} T} ||f||_{L^{\rho}(\mathbb{R})} \ge \eta(p, r) w^{-r}.$$
(3.38)

To prove the converse inequality, we consider $T^* = \{\tau_j^*\}_{j \in \mathbb{Z}}$, where $\tau_j^*(f) = f(j/w), j \in \mathbb{Z}$. Then Ker T^* is given in (3.11). Note that $\operatorname{supp} \tau_j = \{j/w\}$, and, therefore, $T^* \in \Theta_w$. Hence

$$\begin{split} d^{w}(B_{p}^{r}(\mathbb{R}); L^{p}(\mathbb{R})) \\ &\leqslant \sup_{f \in B_{p}^{r}(\mathbb{R}) \cap \operatorname{Ker} T^{*}} \|f\|_{L^{p}(\mathbb{R})} \\ &= \sup \left\{ \|f\|_{L^{p}(\mathbb{R})} : f \in B_{p}^{r}(\mathbb{R}), f\left(\frac{k}{w}\right) = 0, \text{ all } k \in \mathbb{Z} \right\} \\ &= \sup \left\{ \|f\|_{L^{p}(\mathbb{R})} : f \in B_{p}^{r}(\mathbb{R}), f\left(\frac{k + \alpha_{r}}{w}\right) = 0, \text{ all } k \in \mathbb{Z} \right\} \\ &\leqslant \sup \left\{ \|f - s_{r-1,w}(f)\|_{L^{p}(\mathbb{R})} : f \in B_{p}^{r}(\mathbb{R}) \right\} \leqslant \eta(p, r) w^{-r}, \end{split}$$

where the last inequality follows from Proposition 3.2. Hence (3.33) follows from (3.38) and (3.39). Finally, by (3.32) and (3.33) we finish our proof for Theorem 3.1.

4. An Application to Optimal Recovery for $B_p^r(\mathbb{R})$ in $L^p(\mathbb{R})$

Let the Sobolev function classes $W_p^r(\mathbb{R})$ and $B_p^r(\mathbb{R})$ be given as in Section 3. In this section we want to study the problem of optimal recovery for $B_p^r(\mathbb{R})$ in $L^p(\mathbb{R})$ with infinite many function values as information. We will provide a solution to this problem by using ∞ -widths.

Let us now formulate the problem of optimal recovery in the sense of Micchelli and Rivlin [10]. For w > 0, we define

$$\hat{\Theta}_{w} := \left\{ \xi = \{\xi_{j}\}_{j \in \mathbb{Z}} : \xi_{j} < \xi_{j+1}, j \in \mathbb{Z}, \lim_{a \to +\infty} \inf \frac{1}{2a} \operatorname{card}(\xi \cap [-a, a]) \leq w \right\}.$$
(4.1)

For each $\xi \in \hat{\Theta}_w$, we can determine a mapping $I_{\xi} \colon W_p^r(\mathbb{R}) \to \mathbb{R}^{\mathbb{Z}}$, $I_{\xi}(f) := (f(\xi_j))_{j \in \mathbb{Z}}$. We say that I_{ξ} is an information operator. An arbitrary mapping $A \colon I_{\xi}(B_p^r(\mathbb{R})) \to L^p(\mathbb{R})$ is called an algorithm. We consider the approximation problem $\sup \{ \|f - A(I_{\xi}(f)\|_{L^p(\mathbb{R})}) \colon f \in B_p^r(\mathbb{R}) \}$. Taking the infimum over the expression for all possible algorithms leads to the intrinsic error

$$E(B'_{p}(\mathbb{R});\xi) := \inf_{A} \sup_{f \in B'_{p}(\mathbb{R})} \|f - A(I_{\xi}(f))\|_{L^{p}(\mathbb{R})}.$$
(4.2)

To find the optimal set of sampling points in $\hat{\Theta}_w$, we also want to study

$$E(B_p^r(\mathbb{R}); \hat{\mathcal{O}}_w) := \inf_{\xi \in \hat{\mathcal{O}}_w} E(B_p^r(\mathbb{R}); \xi).$$
(4.3)

The problems of optimal recovery of this type were initiated by Sun [13] in the case $p = \infty$. Since then several results for cases p = 1, p = 2, and other function classes have been obtained. The interested readers may refer to [8, 15, 14]. Here we will solve the above problems in the general case $p \in (1, \infty) \setminus \{2\}$.

Since $B_p^r(\mathbb{R})$ is symmetric about the origin (i.e., $f \in B_p^r(\mathbb{R})$ implies $-f \in B_p^r(\mathbb{R})$), it follows from [10] that

$$E(B_p^r(\mathbb{R});\xi) \ge \sup\{\|f\|_{L^p(\mathbb{R})}: f \in B_p^r(\mathbb{R}), f(\xi_j) = 0, j \in \mathbb{Z}\}.$$
(4.4)

For $\xi \in \hat{\Theta}_w$, let $\tau_j \in (W'_p(\mathbb{R}))'$ be defined by $\tau_j(f) = f(\xi_j)$, $j \in \mathbb{Z}$. Then one can easily verify that $T := \{\tau_j\}_{j \in \mathbb{Z}} \in \Theta_w$, where Θ_w is defined by (3.34). Thus, according to the definition of the ∞ -G width and Theorem 3.1 we have

$$\sup\{\|f\|_{L^{p}(\mathbb{R})}: f \in B_{p}^{r}(\mathbb{R}), f(\xi_{j}) = 0, j \in \mathbb{Z}\}$$

$$\geq d^{w}(B_{p}^{r}(\mathbb{R}); L^{p}(\mathbb{R})) = \eta(p, r)w^{-r}.$$
(4.5)

From (4.3), (4.4), and (4.5) we obtain

$$E(B_{p}^{r}(\mathbb{R}); \hat{\Theta}_{w}) \geq \inf_{\xi \in \hat{\Theta}_{w}} \sup\{ \|f\|_{L^{p}(\mathbb{R})} : f \in B_{p}^{r}(\mathbb{R}), f(\xi_{j}) = 0, j \in \mathbb{Z} \}$$

$$\geq \eta(p, r) w^{-r}.$$
(4.6)

On the other hand, for $\xi^* := \{(k + \alpha_r)/w\}_{k \in \mathbb{Z}} \in \hat{\Theta}_w$, by Proposition 3.2 we have

$$E(B_{p}'(\mathbb{R}); \hat{\Theta}_{w}) \leq E(B_{p}'(\mathbb{R}); \xi^{*})$$

$$\leq \sup_{f \in B_{p}'(\mathbb{R})} \|f - s_{r-1,w}(f)\|_{L^{p}(\mathbb{R})} \leq \eta(p, r)w^{-r}.$$
(4.7)

Combining (4.6) and (4.7) gives the following:

THEOREM 4.1. Let r be a positive integer, w > 0, $p \in (1, \infty)$, and the interpolation operator $s_{r-1,w}$ be defined by (3.10). Then

$$E(B_p^r(\mathbb{R}); \hat{\Theta}_w) = E(B_p^r(\mathbb{R}); \xi^*)$$

=
$$\sup_{f \in B_p^r(\mathbb{R})} ||f - s_{r-1,w}(f)||_{L^p(\mathbb{R})} = \eta(p, r)w^{-r}.$$

That is, $\xi^* = \{(k + \alpha_r)/w\}_{k \in \mathbb{Z}}$ is an optimal set of sampling points and $s_{r-1,w}$ is an optimal algorithm which realizes $E(B_n^r(\mathbb{R}); \hat{\Theta}_w)$.

Remark. The above results are also valid in the cases p = 1 and $p = \infty$.

ACKNOWLEDGMENTS

The author is indebted to Professor Han-lin Chen and Professor Sun Yongsheng for their valuable guidance and enthusiastic encouragement. He also thanks the referee for kind suggestions and comments concerning the revised version of this paper.

References

- 1. J. BARROS-NETO, "An Introduction to the Theory of Distributions," Dekker, New York, 1973.
- C. DE BOOR, Splines as linear combinations of B-splines: A survey, in "Approximation Theory, II" (G. G. Lorents et al., Eds.), pp. 1–47, Academic Press, New York, 1976.
- 3. C. DE BOOR AND I. J. SCHOENBERG, Cardinal interpolation and spline functions, VIII, in "Lecture Notes in Math.," Vol. 501, pp. 1–77, Springer-Verlag, New York/Berlin, 1976.
- A. S. CAVARETTA, An elementary proof of Kolmogorov's theorem, Amer. Math. Monthly 81 (1974), 480–486.
- HAN-LIN CHEN AND CHUN LI, Exact and asymptotic estimates for n-widths of some classes of periodic functions, Constr. Approx., in press.
- CHUN LI, Infinite-dimensional widths in the spaces of function, I, Chinese Sci. Bull. 35 (1990), 1326–1330.
- CHUN LI, On some extremal problems of cardinal *L*-splines, Acta Math. Sinica 33 (1990), 330–343. [In Chinese]
- CHUN LI, L¹(ℝ)-optimal recovery on some differentiable function classes, in "Approximation, Optimization and Computing: Theory and Applications" (A.G. Law and C. L. Wang, Eds.), pp. 113–116, Elsevier, North-Holland, Amsterdam, 1990.
- C. A. MICCHELLI, Cardinal *L*-splines, in "Studies in Spline Functions and Approximation Theory" (S. Karlin et al., Eds.), pp. 203-250, Academic Press, New York, 1976.
- C. A. MICCHELLI AND T. J. RIVLIN, Lectures on optimal recovery, in "Lecture Notes in Math.," Vol. 1129, pp. 21–93, Springer-Verlag, New York/Berlin, 1985.
- 11. A. PINKUS, "n-Widths in Approximation Theory," Spnger-Verlag, Berlin, 1985.
- 12. E. M. STEIN, Functions of exponential type, Ann. of Math. 65 (1957), 582-592.

- 13. SUN YONGSHENG, On optimal interpolation for a differentiable function class, I, Approx. Theory Appl. 2 (1986), 49-54.
- SUN YONGSHENG, Optimal interpolation on a convolution class of functions on R, Northeast. Math. J. 6 (1990), 9-25.
- 15. SUN YONGSHENG AND CHUN LI, Optimal recovery for $W_2^r(\mathbb{R})$ in $L^2(\mathbb{R})$, Acta Math. Sinica (N.S.) 7 (1991), 309–323.
- SUN YONGSHENG AND CHUN LI, Best approximation of some classes of smooth functions on the whole real axis by cardinal splines of higher order, *Mat. Zametki* 48 (1990), 100-109. [In Russian]