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Thc concepts of three oo-widths are proposed and some of their properties are
studied in this paper. The main result is that we obtain the exact values of thc three
oo-widths of Sobolev function classes B~(lI~) in U(IR) (l <{, p <{, (0) and find the
optimal subspaces and the optimal linear operator. An application of the oo-widths
to optimal recovery is given. New extremal properties of cardinal splines and
cardinal spline interpolation are discovered. © 1992 Academic Press, IDC.

1. INTRODUCTION

In this paper we continue the initial work of [6] where the notions of
infinite-dimensional widths both in the linear sense and in the sense of
Kolmogorov were introduced. Here we will define another infinite-dimen
sional width in the sense of Gel'fand. For the convenience of readers, we
will give the definitions and basic properties of the Kolmogorov and linear
oo-widths in Section 2. In addition, the definitions in the present paper are
more general than those in [6].

The infinite-dimensional widths, abbreviated to co-widths, are natural
extensions of n-widths. When we consider the best approximation of some
classes of functions over the whole real line IR (or the d dimensional
Euclidean space IR d

), the n-widths can not work well in this situation
because IR (or IR d

) is not compact. To establish a mode for which one can
compare a method of approximating a class of functions over IR with the
best possible one, we introduce the co-widths. Roughly speaking, the
co-widths give the best lower bound which may be achieved by some
method of approximation on some classes of functions over IR, where the
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best lower bound means the optimal order of approximation and the best
constant before the order. Our main results are given in Section 3 where we
obtain the exact values of three oo-widths of Sobolev function classes B;(I~)

in LP(IR) (1 ~ p ~ (0) and find the optimal subspaces and the optimal
linear operator. In Section 4 we give an application of oo-widths to the
problem of optimal recovery of B;(IR) in LP(IR). It is surprising that the
dilation of cardinal spline interpolation is optimal in the sense of both
linear oo-width and optimal recovery.

2. DEFINITIONS AND BASIC PROPERTIES

Given w> 0, let :Yw be the family of spaces of functions over the real line
IR such that

1· . f 1 d'1m III -21m SI [-a,a] ~ w,
a--->+oo a

for all S E:Y:, (2.1 )

where SI [-a,a] is the subspace of S restricted to [ -a, a] and dim SI [-a,a]

is the dimension of SI [-a, a]' It is clear that S := span {<p( •- k/w)} kE z: E:Y:
if <p is a function with compact support and FE:Yw if F is a finite-dimen
sional space of functions over IR. :Y: contains sufficiently many spaces
which are subject to the natural and reasonable condition (2.1). In the
following we let X( IR) be a normed linear space of functions over IR
with norm 11·11 x' We usually take X(IR) as LP(IR) (1 ~ p ~ (0) or
Cb(lR) := C(IR) n L 00(1R).

DEFINITION 2.1. Let:Yw and X(IR) be given as above and A c X(IR). The
quantity

dw(A; X(IR)):= inf sup inf Ilf - gil x
SE3w IrsA gES

(2.2)

is called the infinite-dimensional width of A in X(IR) in the sense of
Kolmogorov, abbreviated oo-K width. The oo-linear width is defined by

ow(A; X(IR)) := inf sup Ilf - M(f) II x,
M lEA

(2.3)

where the M under the inf is taken over all linear operators for which
M(span(A)) E:Y:. If there exists a subspace s* E:Y: such that

dw(A; X(IR)) = sup inf Ilf- glib
lEA ge S*

(2.4 )

then s* is said to be optimal for dw(A; X(IR)) (an optimal subspace for
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dw(A; X(IR))). Similarly, if there exists a linear operator M*: span(A)-?
M*(span(A)) E 5.v such that

6w(A; X(IR)) = sup lif - M*(f)llx,
lEA

then M* is called an optimal linear operator for 6w(A; X(IR)).

(2.5)

Remark. When w= 1, X(IR) = U(IR), 1~ p ~ 00, and A is the unit ball
B;(IR) in the Sobolev space, we have given the definitions of d1(B;(IR);
U(IR)) and 61(B;(IR); U(IR)) in [6]. The reason why dw(A; X(IR)) and
6w(A; X(IR)) are called oo-widths is illustrated in [6]. The reason why
dw(A; X(IR)) is called the oo-K width is that its definition is similar to that
of the Kolmogorov n-width. In addition, we clearly have the relation

(2.6)

PROPOSITION 2.1. Let X(IR) be a normed linear space offunctions over IR
and A c X( IR). Then

(1) d,AA:X(IR))=dw(A;X(IR)), 6w(A;X(IR))=6 w(A;X(IR)), where A
is the closed hull of A.

(2) dw(aA; X(IR)) = lal dw(A; X(IR)), 6w(aA; X(IR)) = lal bw(A; X(IR)),
a E IR.

(3) dw(co(A); X(IR)) = dw(A; X(IR)), bw(co(A); X(IR)) = 6w(A; X(IR)),
where co(A) denotes the convex hull of A.

(4) Let b(A) := {af:fEA, lal ~ 1} be the balanced hull. Then

(5) If Wl < W2' then

dW2(A; X(IR)) ~ dwJA; X(IR)),

(6) If A c Be X(IR), then

dw(A; X(IR)) ~ dw(B; X(IR)),

The proof of Proposition 2.1 is easy, and we therefore omit it. According
to the properties (1), (3), and (4), without loss of generality, we can assume
that A is a closed, convex, and centrally symmetric subset of X(IR).

We now define another infinite-dimensional width which we refer to as
the oo-G width. To this end, we need to make some preparations. Let Y(IR)
be a topological vector space of functions over R By Y'(IR1) we denote the
dual space which is the space of continuous linear functionals on Y(IR1). In
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the following we define the support of an element of Y'(IR) as of the
distribution [1, pp. 54-55]. For this purpose we first note that the support
of a usual function f over IR is defined by

supp f:= {x E IR: f(x) =FO}.

DEFINITION 2.2. Let, E Y'(IR).

(1) Suppose V is an open subset of IR. If

(2.7)

,(f) = 0, for all f E Y( IR) satisfying supp f c V,

then , is said to be zero on V.

(2) The support of , is the complementary set of the largest open
subset on which, is zero. In other words, the support of , is the smallest
closed set outside of which, is zero.

For T:= {,JjEl' , where 'jE Y'(IR), jEll, we denote T(f):= {'j(f)}jEZ'
fE Y(IR); Ker T:= {IE Y(IR): T(f)=O}, where T(f)=O means that
'j(f) = 0, for all jEll. In addition, we use the notation

TI [-a, a] := {'jE T: supp ,/'0 [ -a, a] =F 0}. (2.8)

DEFINITION 2.3. Let w > 0, X(IR) be a normed linear space of functions
over IR, and AcX(IR). Set YA (IR) :=span(A).

(1) ew(A):= {T= {,J jEZ: 'j E Y~(IR), jEll, and lim infa ~ + 00 (1/2a)
card(TI [-a,a]) ~ w}, where card(B) stands for the cardinality of the set B.

(2) Assume OEA. The quantity

dW(A; X(IR)):= inf sup Ilfllx
TE 6/w(A) IE A" Ker T

(2.9)

is called the infinite-dimensional width of A in X( IR) in the sense of
Gel'fand, abbreviated oo-G width. If there exists a T* E ew(A) such that

dW(A; X(IR)):= sup Ilfllx,
lEA" Ker T*

then Ker T* is said to be an optimal subspace for dW(A; X(IR)).

In the following we list some basic properties of dW(A; X(IR)).

(2.10)

PROPOSITION 2.2. Let X( IR) be the normed linear space offunctions over
IR and 0 E A c X(IR).

(1) dW (aA;X(IR))=laldW (A;X(IR)), aEIR.
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(2) Let b(A) be the balanced hull defined as in Proposition 2.1. Then

(3) If WI <wz, then dW2(A;X(IR))~dWl(A;X(IR)).

(4) If A c B c X(IR), then dW(A; X(IR)) ~ dW(B; X(IR)).

Proof We only prove property (4). The proof of the other properties
is easy. Since AcB, YA(IR) = span(A)cspan(B) = YB(IR). Thus YA(IR)::J
Yk(IR). From Definition 2.3 we get 8 w(A)::J 8 w(B). Given TE 8 w(B), then
T E 8 w(A) and we have clearly B n Ker T::J AnKer T. Therefore,

sup Ilfllx~ sup Ilfllx~ dW(A; X(IR)).
fEB n Ker T f E AnKer T

Since TE8 w (B) is arbitrary,

dW(B;X(IR))= inf sup Ilfllx~dW(A;X(IR)).
TE6Iw(B) fEBnKer T

This proves (4).

Remark. (1) Similar to the case of the Gel'fand n-width, we have only

(2) Unlike the case of the Gel'fand n-width, we do not know whether
dW(A;X(IR))~6w(A;X(IR)) is true in general.

3. INFINITE-DIMENSIONAL WIDTHS OF B;(IR) IN U(IR)

We begin this section with some notation to be used below. Let I be a
finite interval or the whole real line IR. Given apE [1, 00 ] we set

W;(1) := {J E U(1): f(r- 1) loco abs. cont. on I and f(r) EU(1)}. (3.1)

W;(I) is the usual class of Sobolev functions over I. Let

B;(1) := {JE W;(1): Ilf(r)llu(I):( 1}, (3.2)

where Ilhllu(I):=(fllh(x)IPdx)l/P, if l:(p<oo;:=esssuPXEllh(x)l, if
p = 00. When 1= [a, bJ is a finite interval we denote that

B;(1) := {J E B;(1): f(j)(a) = f(j)(b), j = 0, ..., r - I}, (3.3)

B;(I)o := {J E 13;(1): f(j)(a) = 0, j = 0, ..., r -1}. (3.4)

Obviously 13;(1) may be viewed as a (b - a)-periodic function class and
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B;(I)o is a subset of B;(I). Since for each f E B;(I)o we can assign zero to
f(x) for x E 1R\l and then f E B;(IR), B;(I)o may also be viewed as a subset
of B;(IR) in this sense.

Let 9';-1 be the space of cardinal'polynomial splines of degree r - 1 with
all integers as simple knots, i.e.,

9';-1 := {s: sE C- 2(1R), sl (k,k+ 1) E ~-lo all kE Z}, (3.5)

where ~-1 is the class of polynomials of degree not exceeding r -1. For
any bounded dataf:=(fj)jEzElOO, it is known (cf. [3~9]) that there is a
unique bounded function s r _ 1(.f; x) E 9'; _ 1 such that

for all jE Z,

where IY.r := (1 + (-1Y- 1 )/4. sr-1 (.f; x) can be expressed in the form

sr-1(.f;X)= L: fjL(x- j),
jEZ

(3.6)

where L(X)E9';_1 satisfying L(j+ IY. r)= Jj,o, JEZ. When (fj)jEZ are the
values of some function f at the points {j+ IY. r } jE Z, we also write

sr-1(.f; x) := L: f(j + IY.r) L(x - j).
jEZ

The meaning of f in s r _ 1(.f; x) depends on the context.
Now we are in a position to state our main results.

(3.7)

THEOREM 3.1. Let r be a positive integer, p E [1,00], w> 0, and 1J(p, r)
be defined by

1J(p, r) := sup{ Ilfll O[ -1,1]: f EB;( [ -1, 1])

andf( _.) = -f(·) = f(·+ 1)}. (3.8)

Then

dw(B;(IR); U(IR)) = Jw(B;(IR); U(IR)

= dW(B;(IR); U(IR)) = 1J(p, r)w- r.

Furthermore,

(1) The following space of polynomial splines with simple knots
{k/w}kEZ

9'; - 1, w : = { s( . ) : s ( ; ) E9'; - 1}' (3.9)
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(2) The interpolation operator sr~ l,w defined by

Ik+lI. )
sr~l,w(f;X):= L fl--r L(wx-k)

kEE \ w

is an optimal linear operator for bw(B;(lR); U(lR».

21

(3.10)

(3)

is an optimal subspace for ~(B;(lR);U(lR)).

(3.11 )

Remark. It is easy to verify that 1](2,r)=11:~r and 1](l,r)=1](oo,r)=
IIEr(·)IILro(iR)' where Er(x) is the Euler polynomial spline of degree r
(cf. [3]), i.e., EA·+1)=-Er(-), ErEC- 1(lR), and E;r)(x) = 1, for all
XE(O, 1). In [6] we proved that d1(B;(lR);L2(lR»=b j (B;(lR); L 2(lR»=
11: -r. Besides 9';-1 and Sr _ j, since (e.g., cf. [15])

Ilf(r) - s~)~ 1(f)11 hiR) + Ils~)_j (f)11 ~)(iR) = Ilf(r)11 hiR)'

it follows that 9;r-l is also an optimal subspace for d1(B;(lR);L2(lR» and
S2r-l is also an optimal linear operator for bj(B;(lR); L2(lR». In addition,
Sun and Li have proved in another paper [16] that when p = 1, 2, and co,

E(B;(lR); 9'rn)p:= sup inf Ilf - gil LP(iR) = 1](p, r)
/EB;(iR) gEY'm

for all integers m ~ r -1. These facts show that dw(B~(lR); U(lR» may have
many optimal subspaces.

The proof of Theorem 3.1 is divided into two parts: estimation from
above and from below. We start with a series of lemmas and propositions
which may be of some independent interest.

PROPOSITION 3.1. Let r be a positive integer and p E (1,00). For each
fE W;(lR), we have Sr_j(f)E W~(lR), and

(3.12)

For the case p = 2 this proposition is proved in the recent paper [15J
The proof given here is similar to that in [15J but with new lemmas. In the
following lemmas, r is always a positive integer and p E (1, (0). For
convenience, we write L or Li instead of LiE z and Jinstead of f!R'
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LEMMA 3.1. Let fE W;(IR). Then the series L IfU +xW converges for
every x E IR.

Proof Since f E U(IR) and fIr) E U(IR) for f E W;(IR), by Stein's
inequalities [12J we know that f' E U(IR). Since

II L IfU+xW dx= I rIfU+xW dx
o 0

= I f+1 If(xW dx= f If(xW dx< 00,
J

L: IfU + xW converges almost everywhere. Let X oE [0,1 J be such that
L: IfU + xoW ~ JIf(xW dx < + 00. Then for any x E [0, 1J we have

IlfU +xW -lfU+xoWI = Ir+ x

p If(y)IP-1 f'(y) sgn[f(y)J dyl
J+XO

~p f+1 If(y)IP-1 I f'(y)1 dy.
,

Thus

I IfU+xW~I IfU+xoW+ I IlfU+xW-lfU+xoWI

~ f If(yW dy + p f If(y)IP-1 1f'(y)1 dy

( )
IIP'( ) lip

~ f If(yW dy +p f If(yW dy f If'(yW dy

=:M<oo,

where lip' + lip = 1. The inequality L IfU + x W ~ M is also true for
all x E IR since L: IfU + x W is an I-periodic function. This proves
Lemma 3.1.

LEMMA 3.2. Suppose r := Uj)jEZ. E IRz satisfies

fi = 0, for all Ijl < 2n and Ifil ~M, for all Iii ~ 2n,

where n = 1, 2, ..., and M is a constant. Then

(3.13 )

Proof For the fundamental function L(x) E 9';-1 appearing in (3.6), we
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first have to estimate f"-n IL(x- jW dx for Ijl ?;;2n. From [3J or [9J it is
known that

for all x E IR, (3.14)

where A and B are positive constants depending only on r. Thus,

r IL(x- jW dx~APr e-Bplx-il dx
-n -n

=APe-BPlil fn esgn(J)Bpxdx
-n

for Ijl ?;; 2n. Hence we have

Ilsr-l (r)11 LP[ -n,n]

~ L If71 'IIL(- - j)11 LP[ -n,n]
Iii ;'Zn

AeBn B _ 2MAe- Bn

~ M " -- e- IJI_ ~ 0 as n~ 00. (316)
'" lil-::zn (Bp)llp - (Bp)llp(l-e- B ) , .

This proves (3.13).

For f:= (!j)id' E IR z we say f E/P provided that Ilfll,p := (L Ihl p)llp < 00.

LEMMA 3.3. Let f E /p. Then

(3.17 )

with the constant C:= (g (Lk IL(x + k)j)P dx)llp < 00.

Proof Let hE U'(IR) satisfying Ilhlt LP'(IR) ~ 1, where lip' + lip = 1. Then

fh(x) sr-l(f; x) dx

~ f Ih(x)1 I 1.fjIIL(x - j)1 dx

=L lijl f Ih(x)1 IL(x - j)1 dx

= L lijl f Ih(x+ j)IIL(x)1 dx
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= f(L Vii Ih(x + j)l) IL(x)1 dx

( )
l1P( ) lip'

=::; f L IjjlP L Ih(x + jW' IL(x)1 dx

fk+ 1 ( ) lip'
= Ilfil/P~ k IL(x)1 ~ Ih(x + j)1 P' dx

1 ( ) lip'
= IlfII/P~L IL(x+k)1 f Ih(x+k+jW' dx

1 ( )( ) lip'
= IlfiliP L ~ IL(x+k)1 ~ Ih(x+ j)IP' dx

(

1 ( )P )lIP( 1 ) lip'
=::; Ilfil/P L ~ IL(x+k)1 dx L~ Ih(x+ j)IP' dx

(

1 ( )P ) lip ( ) lip'
= Ilfil/P L ~ IL(x + k)1 dx f Ih(x)1 P' dx

= C Ilfil/P Ilhll U'(ll;!) =::; C IIfIIIP,

where the constant C is indicated in this lemma and Holder's inequalities
are used twice, From (3,14) we know that C is a finite constant which
depends only on rand p. Hence we obtain

Remark. Professor C. A. Micchelli has told the author that Lemma 3.3
can be proved by the operator interpolation theorem. Since one can easily
verify that inequality (3.17) is true for p= 1 and p= 00, (3,17) is also true
for p E (1, (0) with some constant C. However, the above direct elementary
proof gives the constant C explicitly and may be of some independent
interest.

LEMMA 3.4. Let n be a positive integer. Then

sup{lIf -sr-l(f)llu[-2n,2n]:fES;([ -2n, 2n])} =1'f(p, r),

where 1'f(p, r) is given in (3.8).

Proof Associate two functions f and g via the equation g(x) =
(2njn)1Ip -'f(2nxjn). Then g(r)(x) = (2njn)1/Pf(r)(2nxjn), II gil U[ -n, n] =
(2njn)-r Ilfll u [-2n,2n]' and Ilg(r)IIU[_n,n] = Ilf(r)II U [_2n,2n]' Thus fE
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B;([ -2n, 2nJ) if and only if gE B;([ -n, nJ). Let s~~ l(g; x):=
(2n/n)1/p-rsr _ 1(f; 2nx/n) for fEB;([-2n,2nJ). Then S;_l(g; x) is a
2n-periodic polynomial spline function of degree not exceeding r - 1, which
interpolates g at the points {U + O:r)n/2n g:-_12n . By [5J we know that

sup{llg-s~-I(g)IILP[_1!,1!]:gEB;([ -n, nJ)}

= (2n)-r sup{ Ilhllu[-1!,1!]: hE B;([ -n, nJ), h(· + n) = -h(·) = h( _.)}

( 2 )-r
= \: sup{llhIILP[_I, 1]: hEB;([ -1, IJ), h(·+ 1)= -h(·) =h( _.)}

(
2 )-r=: 1](p, r).

Hence

sup{llf -Sr-l(f)llU[-2n.2n]:fEB;([ -2n, 2n])}

(
2n)r _

= --; sup{llg-s~-I(g)IIU[_1!,1!]:gEB;([ -n, n])} =I}(p, r).

Proof of Proposition 3.1. For fE W;(IR), Lemma 3.1 shows that
2::i IfU + O:r)IP < 00. Therefore by Lemma 3.3, Sr~ 1(f) ELP(IR).

Given e> 0 and noticing that f E W;(IR) c LP(IR), there exists a number
N(e) > 0 such that for every n > N(e),

Ilf- sr-l(f)IIf,,(U1):(e+r If(x)-Sr_l(f;x)IPdx. (3.18)
-n

In the following we employ Cavaretta's technique [4]. We take a
function gEC- 1(1R) with the properties that g(x) = 1, for Ixl::::::1,
suppg=[-2,2J, g(x) is strictly monotone on (1,2)u(-2, -1), and
II g(k)11 L'''(U1) < 00, k = 0, 1, ..., r. There exist such functions [4]. Now we set

X E IR. (3.19)

Then Fn E C- 1(1R), supp Fn = [ -2n, 2n], and

F~)(x)= f(r)(x) g (~) +itl ~i C) f(r-i)(x) g(j) (~).

Observing that Ig(x/n)/ :::::: 1 and /g(j)(x/n)1 :( C1, all x E IR, j = 1, ..., r, and
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from Stein's inequalities [12] that 11/(r- j )llu(IR):::; C2 , j= 1, ..., r, where C1

and C2 are constants independent of n, we have

Consider the periodic function En(x) defined as

Then from F~k)(-2n)=F~k)(2n)=O, k=O, ...,r-1, we know that
- - (r) -r . - (r) _ -Fn/I)!n II U [_2n,2n]EBp ([-2n,2n]) (If IlFn II U [-2n,2n]-O, then Fn=°E B;( [ - 2n, 2n])). Thus, by Lemma 3.4 and (3.20) we obtain

liEn - sr-l(En)11 U[ -n,n]

:::; liEn - sr-1(Fn)JI U[ -2n,2n]

:::;1J(p,r) IIF~)llu[_2n'2n]:::;1J(p,r)(llf(r)llu("l)+ ~ C1C2 } (3.21)

Letting n>N(I» and noting that En(x) = Fn(x)=/(x) for all Ixl :::;n, the
inequalities (3.18) and (3.21) yield

11/- sr-1(f)llfp("l)

:::;1>+ IIEn-sr- 1(f)lIfp[-n,n]

:::; I> + (liEn - Sr-1 (En)IJ U[ -n,n] + Il sr-1 (En) - Sr-1 (f)11 LP[ -n,n])P

( (
() 2

r
C 1 C2 ):::;1>+ 1J(p,r) IIlr II U (IR)+ 11

+ II sr-l(Fn) - Sr-l (Fn)IJ LP[ -n,n] + Il sr_l(Fn) - Sr- 1(/)11 U[ -n,n]y.

(3.22)

On the other hand, by Lemma 3.3, we have

(3.23 )
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where the last inequality follows from the fact that IFn(x)1 ~ If(x)l, for all
x E IR and Fn(x) = f(x), for all Ixl ~ n. Since FnU + t:l r ) - FnU + ar ) = 0,
Ijl < 2n; IFnU + t:l r ) - FnU + t:lr)1 ~ IFnU + exr)1 ~ (Lk If(k + O:r)1 p)llp < 00,

Ijl ~ 2n, n = 1, 2, ..., Lemma 3.2 gives

lim Ilsr-I(Fn)-sr-I(Fn)llLP[_n,n]
n~ 00

(3.24 )

According to (3.23) and (3.24), letting n -400 in (3.22), we obtain

Ilf - sr-I(f)11 fp(~) ~ [; + (1J(p, r) Ilf(r)11 LP(~))p,

Since [; > °is arbitrary, we let [; -4 0+ in the above inequality and get
(3.12). This completes the proof of Proposition 3.1. I

Remark. We should note that the inequality (3.12) is also true for the
case p = 1 and p = 00. The readers may refer to de Boor and Schoenberg
[3] or Micchelli [9] for the case p = + 00 and Li [7] for the case p = 1.
In [9, 7] the general case of cardinal :t'-splines is considered.

PROPOSITION 3.2. Suppose r is a positive integer, W> 0, and p E [1, 00].

For fE W;(IR), let sr-I,w(f) and 1J(p, r) be defined in (3.10) and (3.8),
respectively. Then sr-I,w(f) E U(IR), and

Ilf - sr-I,w(f)ll LP(~) ~ 1J(p, r) w- r Ilf(r)11 LP(~)' (325)

Proof By Proposition 3.1 and the above remark, the inequality (3.25)
is true for the case W = 1. For the general case W > 0, we make a transform
of dilation as follows. Let g(x):== f(x/w). Then one can easily see that
sr_l,w(f;X)=Sr_l(g;WX). In the following we consider only the case
1~ p < 00. The proof for the case p = 00 is similar. Thus,

Ilf -sr-l,w(f)llLP(~)

, )I~=(t Ig(wx)-sr_l(g; wxW dx

=(~f~ Ig(y)-sr-I(g; yW dyYiP =W-
1lp Ilg-sr-l(g)llu(ill)

~ W- 1IP1J(p, r) II g(r)11 LP(~) = W-
1lp - r1J(p, r) (fill \fir) (;)\ PdyYiP

= W- r1J(p, r) (t If(r)(xW dxyiP = W- r1J(p, r) Ilf(r)11 LP(ill)' I
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To get the lower bound, we need the following lemma. Let X be a
normed linear space and A c X. By bn(A; X) we denote the Bernstein
n-width [11] of A in X.

LEMMA 3.5. Let nand r be positive integers and p E [1, co]. Then

bn(B;(I)o; LP(I)) ~ bn+ r(B;(I); LP(I)),

where 1= [a, b] is a finite interval, and B;(I) and B;(I)o are defined in (3.3)
and (3.4), respectively.

Proof Given 8> 0, according to the definition of the Bernstein n-width
[llJ, there exist a ,u>0 and a subspace Xn+r+1cLP(I} with
dim Xn + r + 1 = n + r + 1, such that

and

where S(Xn+r+d:= {JEXn+r+1: Ilfllv(l):::; I}. Note that from the first
containing relation we know that each element of X n + r + 1 has continuous
derivatives up to order r - 1. Put

Then dim X::,+ 1~ dim Xn+r+ 1- r = n + 1 and ,uS(X::'+ 1) s; B;(I)o. There
fore

Letting 8 --+ 0+ we conclude the desired inequality. I

Proof of Theorem 3.1. We first point out that 9';-1,wE3';:." where 3';:., is
the family of spaces defined in Section 2 and 9'; _ 1, w is given in (3.9). In
fact, if we consider the B-spline function [2J

[
1 rJ r-1Mrw(x):=r 0,-, ...,- (·-x)+, w w

with 0, l/w, ..., r/w as simple knots, then Mr,w has compact support
[0, r/w] and 9';-1,w = span{Mr,w(·-k/w)}kEz· Thus according to Sec
tion 2 we see that 9';-1 wE ffw • Now, observing that Sr-1 w (cf. (3.10)) is a, ,

linear operator which maps W;(IR) = span(B;(IR)) into 9';-1,w, by Proposi
tion 3.2, the definition of co-linear width, and the inequality (2.6), we
obtain

dw(B;(IR); LP(IR)):::; bw(B;(IR); LP(IR))

:::; sup Ilf-sr-1,w(f)llV(lRj:::;lJ(p,r)w-r. (3.26)
fEB,;;(IR)
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To show that equality holds in (3.26), it remains to prove that
dw(B;(IR); U(IR)) ~ 1J(p, r)w- r. By the definition of the co-K width, it is
sufficient to demonstrate

E(B;(IR);S)p:= sup inf Ilf-gllu(!Rl~1J(p,r)w-r,
fES;(IR) gES

for all S E :T,,,.

(3.27)

Let e > 0 and S E f!Tw. Without loss of generality we can assume that
dimS=oo. From (2.1) we can find a sequence {ad%"= 1 of positive
numbers satisfying ak ~ co as k ~ co such that

k= 1, 2, .... (3.28)

Set h := [ -ab ak]. As we pointed out at the beginning of this section,
B;(Ik)O can be viewed as a subset of B;(IR). Thus, by definition we have

E(B;(IR); S)p ~ sup inf lif - gil U(IR)

fES;(!klo gES

~ sup inf Ilf-gIIU(!k)~dnk(B;(h)o;U(h», (3.29)
fES;(!k)o gESllk

where the last inequality follows from the definition of the Kolmogorov
n-width dn(A; X) and (3.28). By the fact that dn(B;(Ido; U(Id) ~
bn(B;(lk)O; U(h)) and Lemma 3.5 we get

E(B;(IR); S)p ~ bnk(B;(lk)O; U(h))

~ bnk+AB;(Ik); U(h))

= (~ )' bnk+r(B;([ -n, n]); U([ -n, n])

~ (nw)-r(1 + e)-r2-rn~bnk+AB;([ -n, n]); U([ -n, n])),

(3.30)

where the equality follows from a transform of scale of variable argument
in the definition of the Bernstein n-width and the last inequality follows
from (3.28). For the case 1<p< co we know from Chen and Li [5] that

lim 2- rnrbn +AB;([ -n, n]);U([ -n, n])
n~ 00

. ( n )r _= hm 2- r -- (n+rYbn+r(B;([-n,n]);U([-n,n]))
n~oo n+r

= sup{llfll v [_1r,1r]: jEB;([ -n, n]) andI( _.) = 1(·) = -f(· + n)}

= nr sup{ II f II V[ -1,1] : f E B;( [ - 1, 1]) and f( - . ) = f(· ) = - f( .+ 1)}

= nr1J(p, r). (3.31)
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From the monograph [11, pp. 133, 180, and 183] we see that the above
strong asymptotic relation is also true in the cases P = 1 and p = 00,

Therefore, letting k -+ 00 in (3.30) and noticing that nk -+ dim S = 00, we
conclude that

E(B;(IR); S)p?; (1 +e)-rrJ(p, r)w- r,

Since e> 0 is arbitrary, (3.27) follows, and therefore dw(B;(IR); U(IR))?;
Yf(p, r)w- r

• Combining this inequality with (3.26) gives

dw(B;(IR); U(IR)) = Jw(B;(IR); U(IR))

= sup 11/-sr_l,w(f)IILP(~)=rJ(p,r)w-r. (3.32)
fEB;(~)

To complete the proof of Theorem 3.1, we must show

~(B;(IR);U(IR))= sup 1I/IILP(~)=rJ(p,r)w-r, (3.33)
fEB;(~)nKer T*

where Ker T* is given in (3.11). For A = B;(IR) we have YA(IR):=
span(A) = W;(IR). By (W;(IR))' we denote the dual space of W;(IR), and for
ease of notation, we set

e w := ew(A)

= {T= {'jLEZ: 'j E (W;(IR))', j E Z, lim inf 2
1

card(TI [-a,a]) <w}.
a-+ +00 a

(3.34 )

Again, let e > 0 and T = {'j} j E Z E ew' By definition we can find a sequence
{ak } '!:~ 1 of positive numbers with ak -+ 00 as k -+ 00, such that

Put h := [ -ab ak]. Then we have

k=1,2, .... (3.35)

sup IIII1 LP(n;!)
fEB;(n;!)nKer T

?; sup IIIII LP(n;!)
f E B;(lk)Q n Ker T

sup IIIII LP(/k)?; dnk(B;(Ik)O; W;(Ik)O), (3.36)
fEB;(/k)onKer T11k

where the last inequality follows from the definition of the Gel'fand n-width
~(A; X) and the definition of nk' Note that we can view the continuous
linear functionals in T//k as elements of (W;(Ido)', where W;(Ik)O:=
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span(B~(Ik)O) is a subspace of U(Ik) with norm 11·11 V'(h)' By well known
properties [11 ] of the Gel'fand n-width, we have

dn(B~(h)o; W~(Ik)O)= ~(B~(h)o; L~(h)) ~ bn(B~(h)o; L~(Id). (3.37)

As an analog to the previous deduction (cf. (3.28)-(3.31)), from (3.35),
(3.36), and (3.37) we can conclude that

sup Ilfll LP(!R) ~ (1 + e)-r1J(p, r)w- r.
IE B;(!R) n Ker T

Since e >°and TEe ware arbitrary, it follows that

dW(B~(IR);U(IR))= inf sup 1I/IiLP(iR)~'1(p,r)w-r. (3.38)
TE e w IE B;(iR) n Ker T

To prove the converse inequality, we consider T* = {1} LEI' where
rtU) = f(jjw), j E 7L. Then Ker T* is given in (3.11). Note that supp rj =
{j/w}, and, therefore, T* E ew ' Hence

dW(B~(IR);U(IR))

:::;; sup Ilfll U(!R)
IE B;(!R) n Ker T*

= sup {II/II LP(iR): f E B~(IR), f (~) = 0, all k E 7L}

= sup {iI/IIU(!R):fE B~(IR), f e:a
r

) = 0, all kE 7L}

:::;;sup{llf-sr~l,wU)llu(iR):fEB~(IR)} :::;;1J(p, r)w- r,

where the last inequality follows from Proposition 3.2. Hence (3.33) follows
from (3.38) and (3.39). Finally, by (3.32) and (3.33) we finish our prooffor
Theorem 3.1. I

4. AN ApPLICATION TO OPTIMAL RECOVERY FOR B;(lR) IN U(IR)

Let the Sobolev function classes W~(IR.) and B;(IR.) be given as in
Section 3. In this section we want to study the problem of optimal recovery
for B~(IR.) in U(IR.) with infinite many function values as information. We
will provide a solution to this problem by using oo-widths.

Let us now formulate the problem of optimal recovery in the sense of
Micchelli and Rivlin [10]. For w> 0, we define

eW : = J~ = gJ jEd': ~j < (j + 1, j E 7L, lim inf 2
1

card( ( n [ - a, a]) :::;; wI( .
l. G------++O(> a J

(4.1 )

640/69/1-3
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For each ~ Ee w, we can determine a mapping I~: W;(lR) -+ IRZ, I~(f) :=
(f(~))jEZ' We say that I~ is an information operator. An arbitrary
mapping A: I~(B;(IR)) -+ U(IR) is called an algorithm. We consider the
approximation problem sup{ III - A(I~(f)11 LP(IR): IE B;(IR)}. Taking the
infimum over the expression for all possible algorithms leads to the
intrinsic error

E(B;(IR);~) :=inf sup III -A(I~(f))IILP(IR)' (4.2)
A fEB;(IR)

To find the optimal set of sampling points in ew , we also want to study

(4.3)

The problems of optimal recovery of this type were initiated by Sun [13J
in the case p = 00. Since then several results for cases p = 1, p = 2, and
other function classes have been obtained. The interested readers may refer
to [8, 15, 14]. Here we will solve the above problems in the general case
pE(I,oo)\{2}.

Since B;(IR) is symmetric about the origin (i.e., IE B;(IR) implies
-IE B;( IR)), it follows from [!OJ that

E(B;(IR); 0 ~ sup{ I1II1 LP(IR): I EB;(IR),f(~j) = 0, j E£'}. (4.4)

For ~Eew, let 'jE(W;(IR))' be defined by 'j(f)=I(~j)' jE£'. Then one
can easily verify that T:={'jtEZEew, where e w is defined by (3.34).
Thus, according to the definition of the oo-G width and Theorem 3.1 we
have

sup{ IIIIILP(IR):IE B;(IR), I(~j) = 0, jE £'}

~ dW(B;(IR); U(IR)) = I1(P, r)w~r.

From (4.3), (4.4), and (4.5) we obtain

E(B;(IR); ew)~ inf sup{IIIIILP(IR):IEB;(IR),f(~j)=O,jE£'}
~Eew

(4.5)

(4.6)

On the other hand, for ~* := {(k + ocr)/w} kEZ E ew , by Proposition 3.2 we
have

E(B;(IR); e w)~ E(B;(IR); ~*)

~ sup 111-sr_l,w(f)[lLP(IR)~I1(p,r)W-r. (4.7)
fE B;(IR)
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Combining (4.6) and (4.7) gives the following:

33

THEOREM 4.1. Let r be a positive integer, w>O, pE(l, 00), and the
interpolation operator Sr-l,w be defined by (3.10). Then

E(B;(lI~); ew ) = E(B;(~); ~*)

= sup Ilf-sr-l.w(J)lIu(IR)=i](p,r)w-r.
IE B;(IR)

That is, ~* = {(k+ IXr)/W}kEZ is an optimal set oj sampling points and Sr-1 w

is an optimal algorithm which realizes E(B;(~); ew )' '

Remark. The above results are also valid in the cases p = 1 and p = 00,
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